

MS Roald


Amundsen

1st - 19th

September, 2025

Baffin Bay Exploration

When you arrived on the MS Roald Amundsen you boarded an education and research-focused expedition ship fully equipped as a floating laboratory and designed to be a center of learning and discovery. In your time on board, you contributed to scientific studies and expanded your knowledge of the world around you. Let's take a look back on our journey and what we accomplished while sailing through Arctic Canada and Greenland centered around Baffin Bay.

Arts, Crafts & Creativity

We witnessed the amazing landscapes and culture of the Canadian Arctic in Nunavut, and also Greenland. We were inspired to create art reflecting our surroundings including watercolour post cards, sea glass jewelry, bone and stick game making, and how to draw whales!

Science & Education Program

Our guest lecturer, Prof. Martin Attrill, and our onboard naturalists guided our guests using scientific tools to investigate the world around us. Through lectures, discovery sessions, zodiac cruises, and visits ashore we aimed to make every expedition day a memorable and unique learning experience.

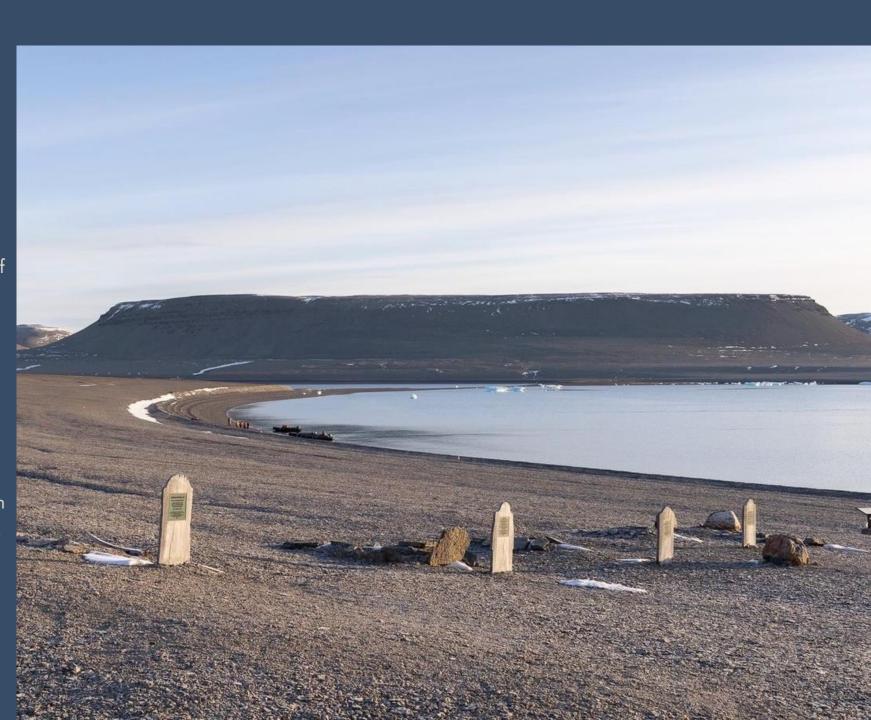
Inuit Culture

One thing is hearing, reading or watching documentaries about the native cultures of the arctic. However, another very different one is to visit communities and hear first hand, our cultural ambassadors talking about their people, culture, language, traditions, and heritage. This is the most genuine manner to learn about those cultures, and all the wisdom and knowledge our ambassadors had to share with us we will not be able to find in any book or documentary!

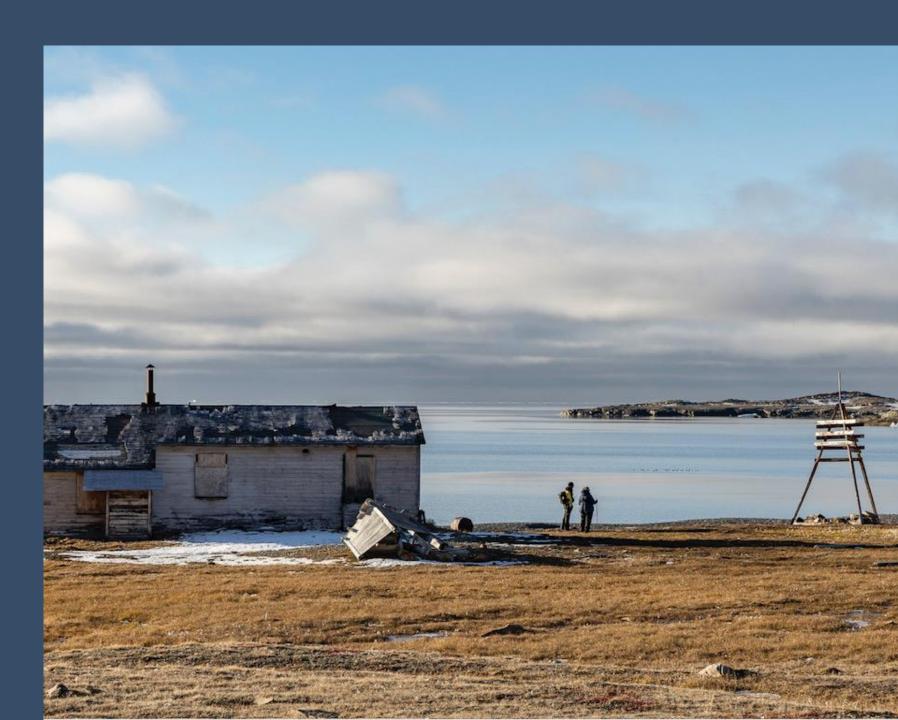
Inuit Culture

During this trip we've heard Simona's personal story of her time in problematic Residential Schools. We have learned about the hunting culture and how important hunting is even in modern life from Malla and Inuuteq. We've played Inuit games with Kenneth and Sierra and learned they are competitive sports and workouts wrapped in one. We've seen Leslie's lovely Amauti and the seen the seasons in her home town of Pond Inlet.

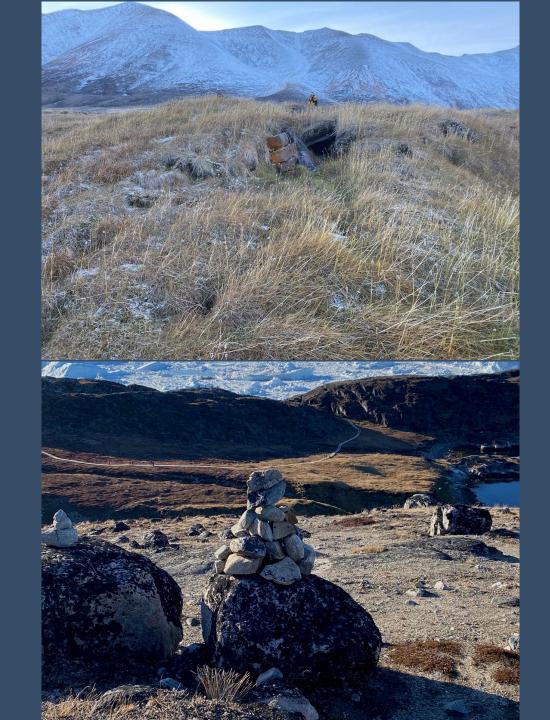
Inuit Culture


We've also learned both the geopolitics and tourism of modern Greenland from Inuuteq. Made bone and stick game using everyday materials with Kenneth and Sierra. Learned about Oxen Network - The Inuit run NGO in expedition tourism from Inuuteq. And learned to write our names in Inuktitut with Sierra and Kenneth. Visited many communities and seen the traditions first hand. As well as hearing many many other stories from all of our lovely ambassadors!

History & Culture


IN THE FOOTSTEPS OF GREAT EXPLORERS.

During our voyage we follow footprints of one of the greatest Arctic explorers. One of the most significant place, filled with mysteries of Erebus and Terror expedition, was Beechy Island where graves of 3 members of Franklin expedition are located. Place where Sir John overwinter, which was used and studied by Search and Rescue parties looking for him and his man. Place which explorer Roald Amundsen visited during his first successful sailing across North West Passage.


History: RCMP of the Far North.


During our voyage we were following the footsteps of the great Arctic explorers. In Dundas Harbor however we had a unique opportunity to witnessed present of ordinary men send to serve their country, like in this case Royal Canadian Mounted Police officers. The site is also strictly related to the out post Hudson Bay Company — powerful trading organization which had strong influence shaping history of Canadian Arctic.

Archaeology

Stepping ashore in many of the locations along our route we found the outlines of tents, food caches and the remains of turf dwellings left by people who lived in the far north for countless generations before European explorers began their search for the elusive Northwest Passage. Stone sentinels on the hills are mute witnesses to these places where people who are remembered locally as the Sivullirmiut – the Ancient Ones - dating back to five thousand years ago, and more recently the Thule Inuit who spread throughout the Arctic starting one thousand years ago, left their faint marks on the landscape. Our Inuit Cultural Ambassadors helped us to understand how their ancestors survived, and thrived, in a land that can seem barren to our eyes, and some of the feats of the past were celebrated in the drum songs that were performed for us during community visits.

Science Boat

During our voyage we conducted plankton sampling techinques focusing on the abundance and type of plankton in the waters we sailed through. The samples and data which you recorded provided invaluable data for the Secchi Disk project, monitoring world-wide plankton abundance.

During the science boats in Feachum Bay,
Dundas Harbour, Crokery bay, and Uummannaq
we used a CTD to create a physical profile of the
water column, took measurements of turbidity to
estimate phytoplankton abundance, then
deployed a plankton net to collect samples. The
image on the left shows us taking a secchi depth
measurement!

Science Boat: Fechum Bay CTD data

Our CTD casts gave us insight into how salinity, temperature, and chlorophyll changes with depth.

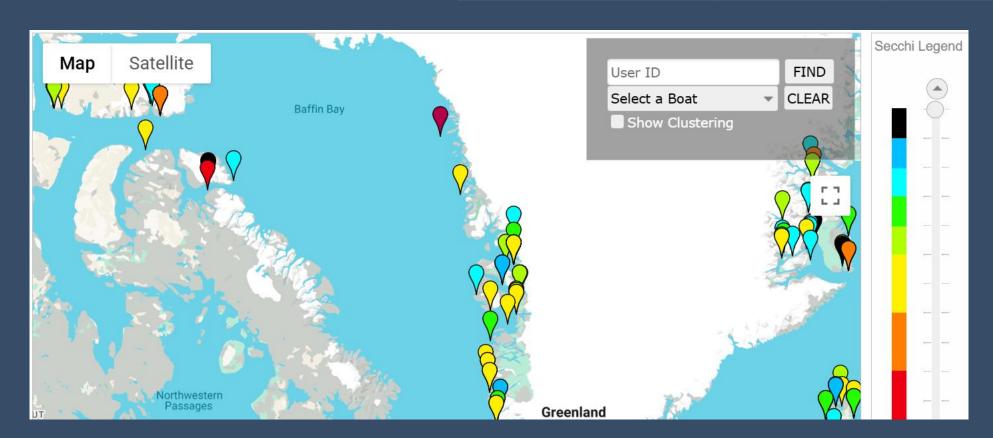
Typically, salinity increases with depth while temperature decreases since cold, salty water is more dense. We can see this trend on the chart to the left from Feachum Bay. Eg. Temperature (green) decreases from 3.5 c at the surface, to 0 degrees at 55m depth. Chlorophyll— the photosynthetic pigments in phytoplankton—measurements gives us information on phytoplankton abundance, usually more chlorophyll is detected in the first 30m of depth, where sunlight is able to penetrate. In Feachum Bay we detected a peak of chlorophyll (3.5ug/l) at around 20m dept.

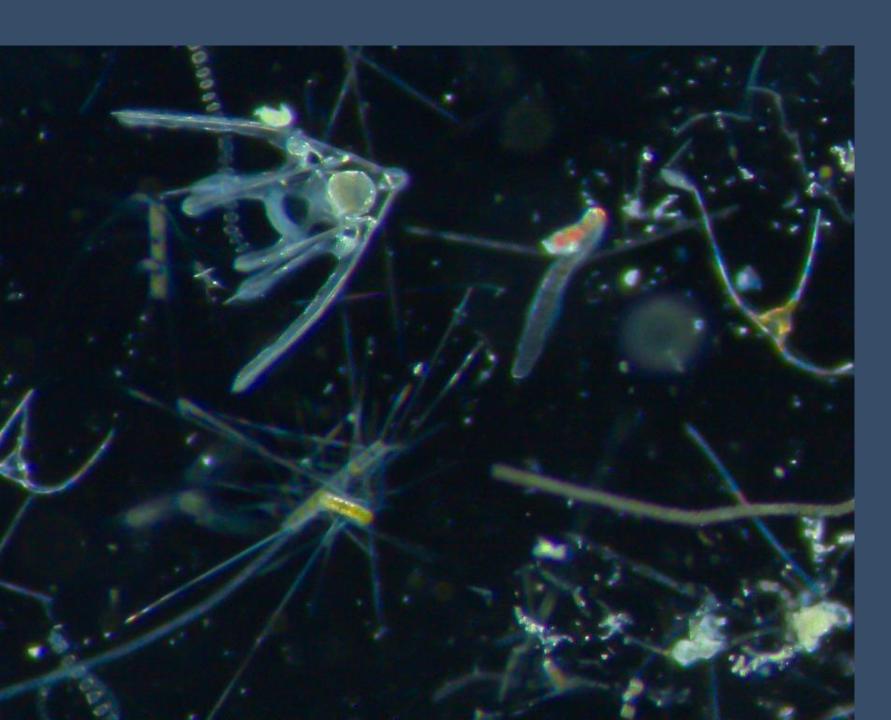
32.10

Science Boat: Dundas Harbour CTD data

Here our CTD cast shows:

Temperature (green) at the surface (0–5m) is ~0 °C (slightly below zero, common in polar or near-freezing waters due to seawater's freezing point being around -1.8 °C). It stays fairly uniform until 40m. Below 45m, there is a small temperature rise. This suggests a different water mass intruding at depth.

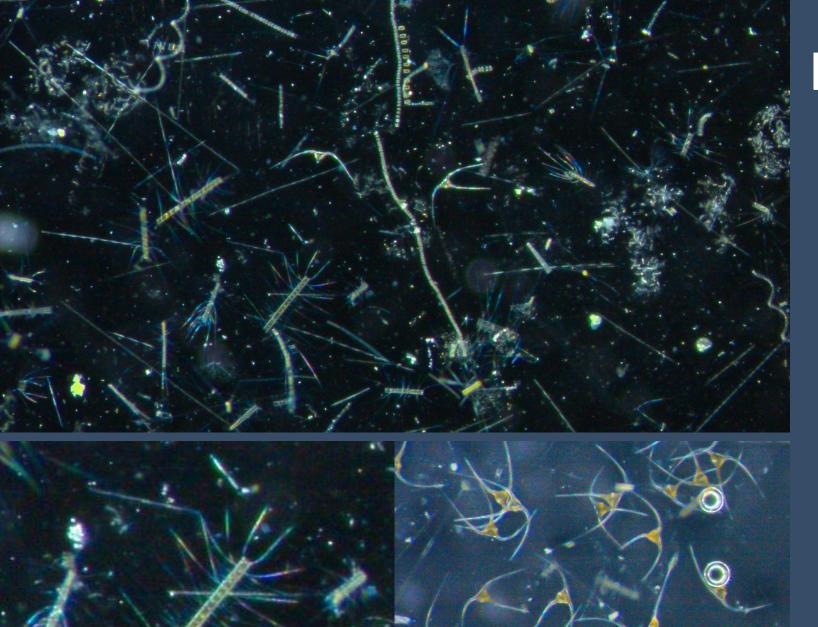

Salinity (blue) increases gradually with depth until 35–40m.


Then stabilizes around 32 PSU below 45m. This pattern suggests fresher water at the surface (likely from ice melt or runoff) and saltier, denser water at depth.

'Chlorophyll a (red) is at its highest concentration between 10–25m, where there's a broad peak. Below 30m, values drop off and stay low. This indicates a subsurface chlorophyll maximum — the depth where phytoplankton are most abundant because there is still light penetration but also more nutrients than at the surface.

Citizen Science The Secchi Disk Project

	Secchi depth (m)	Average past Secchi depth (m) 2019-2024	Water temp (celcius)
Feachum Bay	18.6	N/A (first measurement)	1.8
Dundas Harbour	16.8	12.5	-0.2
Croker Bay	17.6	3.6	0.0
Uummannaq	15.9	13.0	2.1

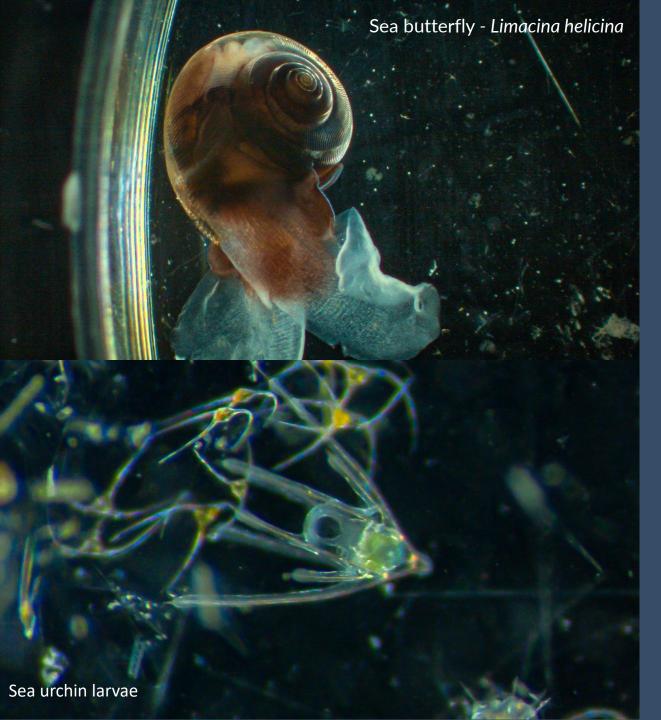


Plankton samples

Plankton are ocean drifters transported by currents and tides, and the lack of ability to navigate against these natural forces.

Animals (zooplankton) and plant-like algae (phytoplankton) play a key role in supporting the marine food web and health of our oceans.

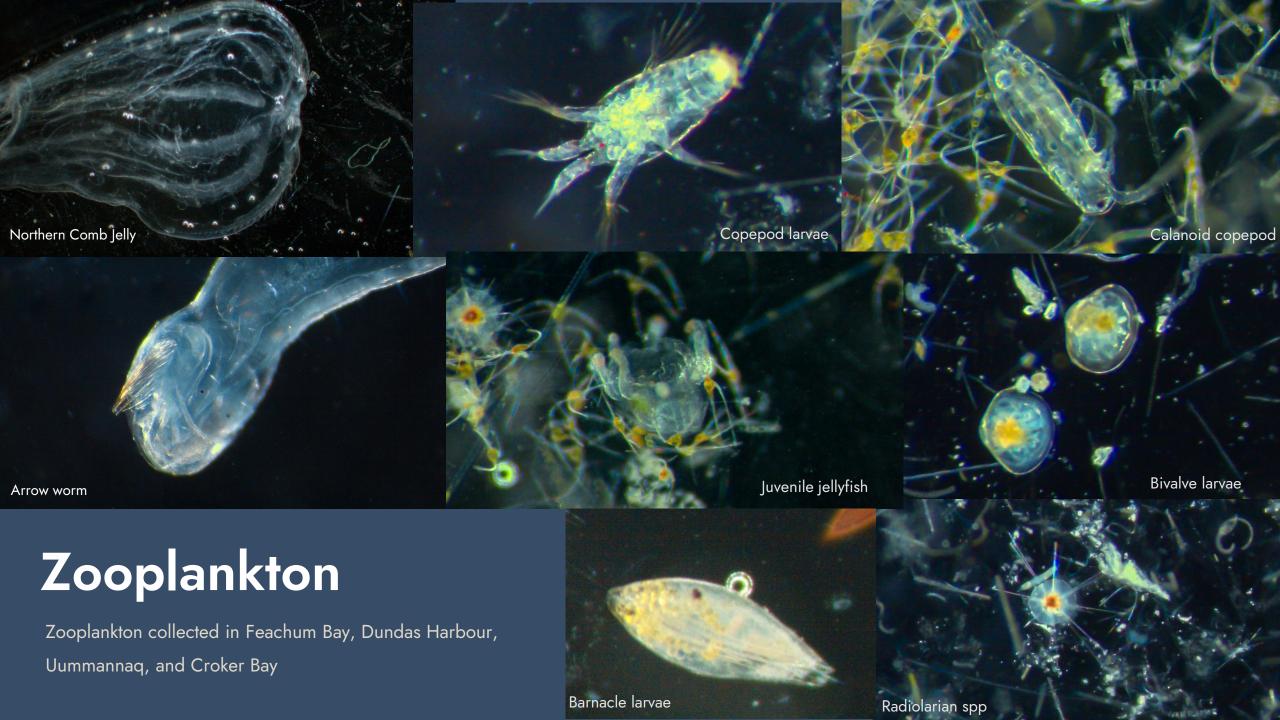
The image on the left shows a plankton sample from Dundas Harbour, Canada. Showing an echinoderm (sea star or sea urchin) larvae (top left), a cheatoceros phytoplankton chain (below the echinoderm larvae), and a Tripos longipes phytoplankton (right).


Tripos longipes

Chaetoceros spp

Phytoplankton

Phytoplankton underpin the marine food web as they, like plants on land, contain photosynthetic pigments (chlorophyll and fucoxanthin) that convert sunlight into energy and oxygen, and also sequesters carbon dioxide.


We collected phytoplankton samples in the multple locations in Baffin Bay. The pictures on the left show various species of phytoplankton including *Tripos longipes*, *Chaetoceros spp*, and *Thalassiosira spp*.

Zooplankton

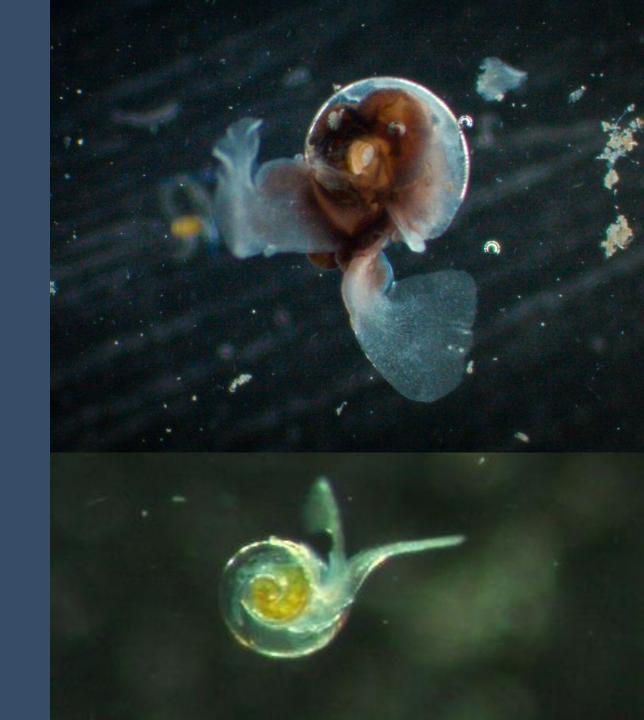
The zooplankton samples we collected included both catagories of zooplankton. 'Holoplankton', which remains planktonic their whole life cycle, which includes copepods, and sea butterflies (top left). Also 'Meroplankton', which are only planktonic for part of their life cycle, which includes larvae such as the echinoderm (sea urchin) larvae (bottom left).

The photos taken on our microscopes have also been added to our iNaturalist project, to help monitor plankton bioidiversity!

Zooplankton: Sea Angel/Naked Sea Butterfly (Clione limacina)

One of our most beautiful wildlife sightings of the voyage were our sea angels, found in Uummannaq (Greenland), and also in Croker Bay (Canada)
Sea angels are small, transparent marine gastropods belonging to a group of swimming sea slugs known as pteropods. Found mostly in polar waters, sea angels have soft, gelatinous bodies and are named for their delicate, wing-like appendages called parapodia, which they flap gracefully to "fly" through the water.

Despite their angelic appearance, sea angels are predators—feeding primarily on sea butterflies Their anatomy includes a specialized feeding structure called a buccal cone, equipped with tiny hooks or radulae. The bottom left phot shows a baby sea angel found in Croker Bay!

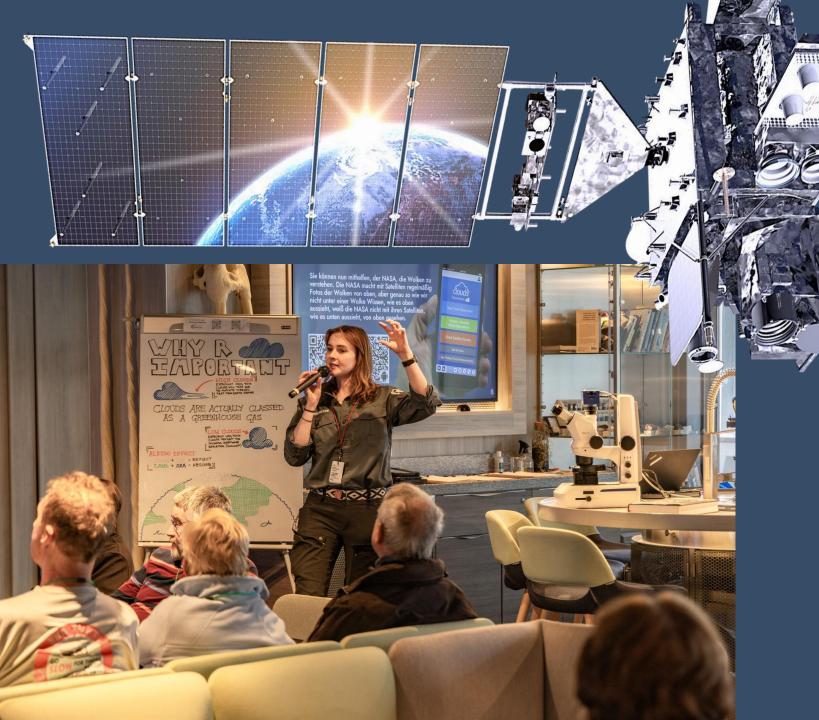


Zooplankton: Sea Butterfly (Limacina helicina)

Sea butterflies are small, pelagic marine gastropods belonging to the clade Thecosomata. They are characterized by their delicate coiled shells and wing-like parapodia that enable them to "flutter" through the water.

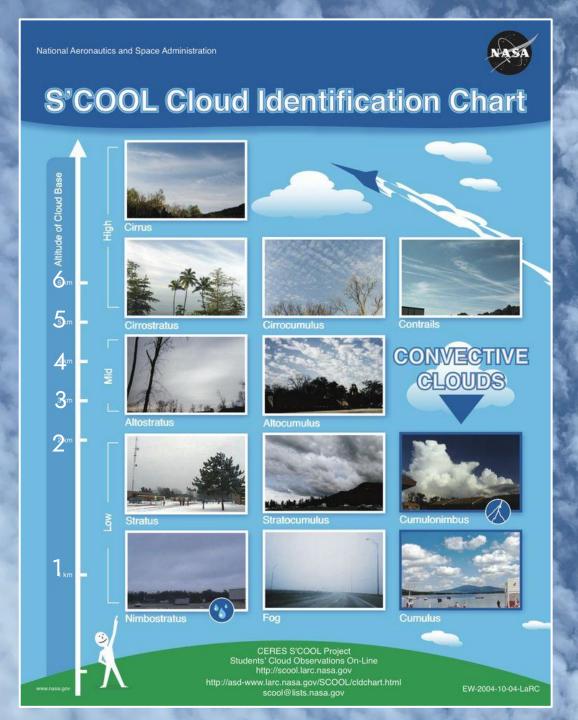
Sea butterflies play a vital role in the marine ecosystem as grazers of phytoplankton and as an important food source for predators like sea angels, bowhead whales, and little auks. They are also indicators of ocean health, sensitive to changes such as ocean acidification, which can affect formation of their calcium carbonate shells.

The photos on the right show sea butterfly caught in arctic Canada (top), and a baby sea butterfly found in Uummannaq, Greenland.



Guest Lecturer: Professor Martin Attrill

On our voyage we were lucky enough to have Prof. Martin Attrill, from the University of Plymouth, and his wife, Dr Karen Gresty onboard. During the plankton review sessions, they shared their expertise and helped us to identify the species found during our science boats!


Martin also gave lectures on the history and current state of our oceans, a lecture series on climate change, and additional talks such as weird and wonderful world of marine life and discussing the longevity of animals.

Citizen Science NASA Cloud Observer

Clouds aren't just shapes in the sky; they are important components of Earth's heat budget and balance. Information about when, where, and what types of clouds are forming helps scientists understand more about Earth's climate and climate change. Through NASA's GLOBE Cloud Observer program, we help contribute such data.

Our citizen scientists **submitted 5 observations** to the global database run by
NASA. Our observations might be matched to
data from weather satellites orbiting above and
will be used to better understand global
weather phenomena.

Citizen Science

NASA Cloud Observer

High Clouds (Base above 6,000 meters):

Cirrus: Thin, wispy clouds composed of ice crystals. They often appear as delicate streaks or feathery wisps high in the sky.

Cirrostratus: Thin, sheet clouds that cover large portions of the sky. They can create a halo around the sun or moon.

Cirrocumulus: Small, fluffy clouds, resembling fish scales or ripples.

Medium Clouds (Base between 2,000 and 6,000 meters):

Altocumulus: Puffy, grayish-white clouds with rounded edges. They often form parallel rows or patches.

Altostratus: Thick, grayish clouds that partially obscure the sun or moon. They lack the distinct features of cirrostratus.

Low Clouds (Base below 2,000 meters):

Stratus: Uniform, gray clouds that cover the sky like a blanket. They can bring drizzle or light rain.

Stratocumulus: Low, lumpy clouds with defined edges. They often appear in rows or patches.

Nimbostratus: Thick, dark gray clouds associated with steady rain or snow.

If you'd like to explore more examples, you can check out NASA's On-Line

Cloud Chart View our data on the global map

GLOBE Cloud Observations Paired with NASA Satellite Data

Total Satellite Comparisons: 5

Useful Resources: <u>How to Read My NASA GLOBE Clouds Satellite Comparison Table</u>, <u>How to Compare My Cloud Observations with Satellite Data</u>, <u>Cloud Cover</u>, <u>Cloud Type</u>, <u>Cloud Opacity</u>, <u>Satellites</u>

Observation	GLOBE	NOAA-20 Satellite
Universal Date/Time	2025-09-14 14:59:00	2025-09-14 15:06
Latitude	71.78	71.4 to 72.2
Longitude	-57.12	-57.6 to -56.8
Total Cloud Cover	Broken (50-90%)	Broken 82.10%
High Clouds	Cirrocumulus Cirrostratus Cover: Scattered (25-50%) Opacity: Transparent	Cover: Few (1.79%) Altitude: 6.65 (km) Phase: Ice 241.88 (K) Opacity: Transparent
Mid Clouds	Altostratus Cover: Scattered (25-50%) Opacity: Translucent	Cover: Scattered 36.39% Altitude: 4.45 (km) Phase: Ice/Water Mix 252.96 (K) Opacity: Translucent
Low Clouds	Stratus Cover: Isolated (10-25%) Opacity: Opaque	Cover: Scattered 43.92% Altitude: 1.28 (km) Phase: Ice/Water Mix 267.06 (K) Opacity: Translucent

Our data

Satellite data

Feedback from NASA Globe Clouds

We received an email back from the NASA Globe Cloud project!

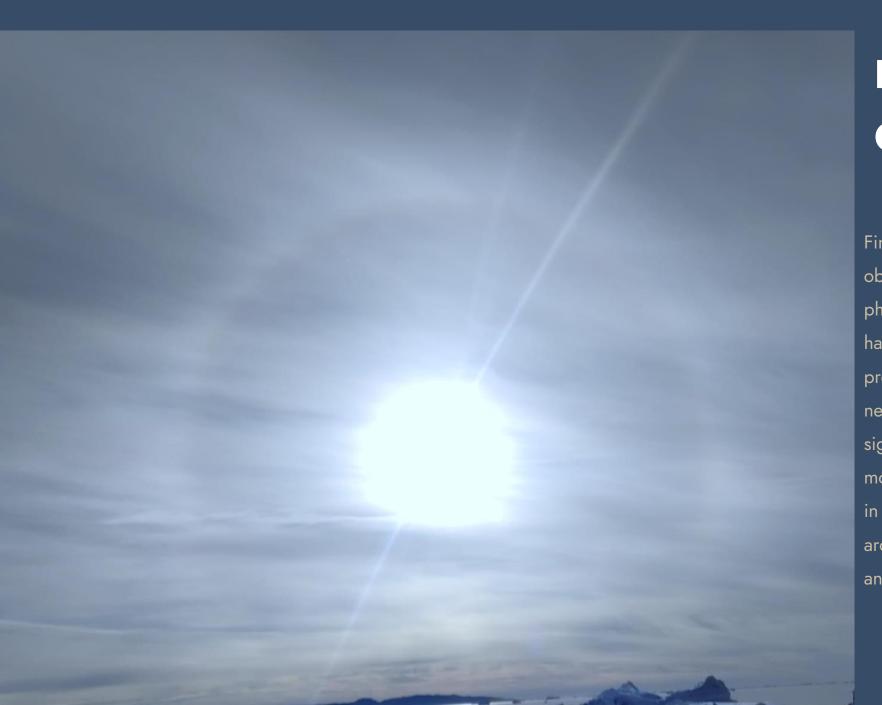
The image on the left shows our observations on the 14th September in blue, compared to the NOAA-20 Satellite data recordings for the same area in white.

The comparison highlights the importance of our observations in adding additional data to satellite imagery. We recorded **50-90% cloud cover**, and clouds on all 3 levels. In contrast, the satellite recorded **82.10% overall cloud cover** and a very similar distribution of clouds as us!

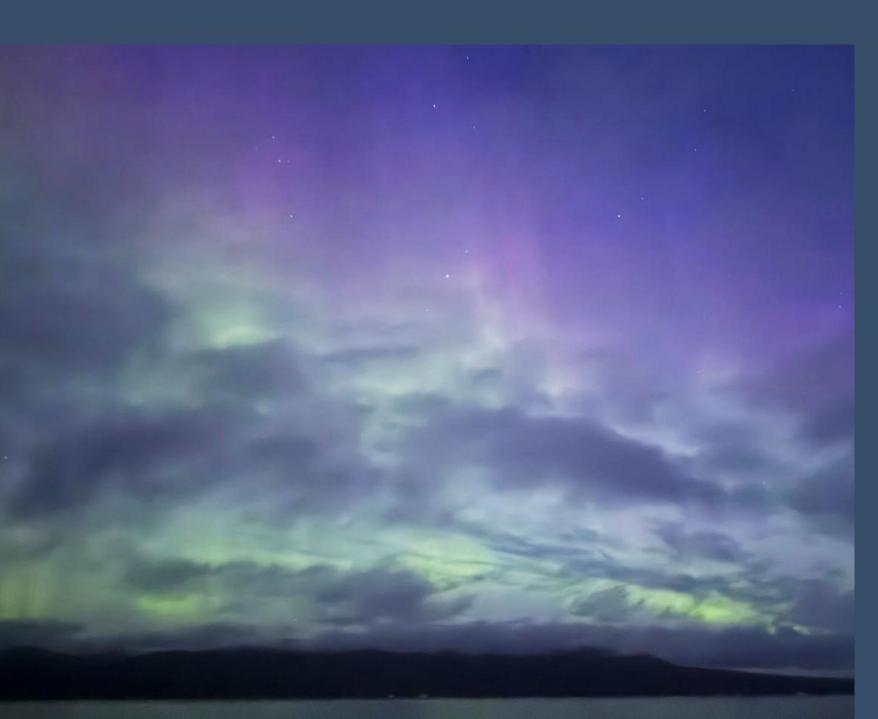
Exceptional Clouds Observations: Lenticular

Altocumulus

Some very special clouds were observed throughout the trip. In this case, Globe Observer requests us to upload an observation even in the absence of a satellite flyover.


These lenticular altocumulus in the evening light of September 9th.

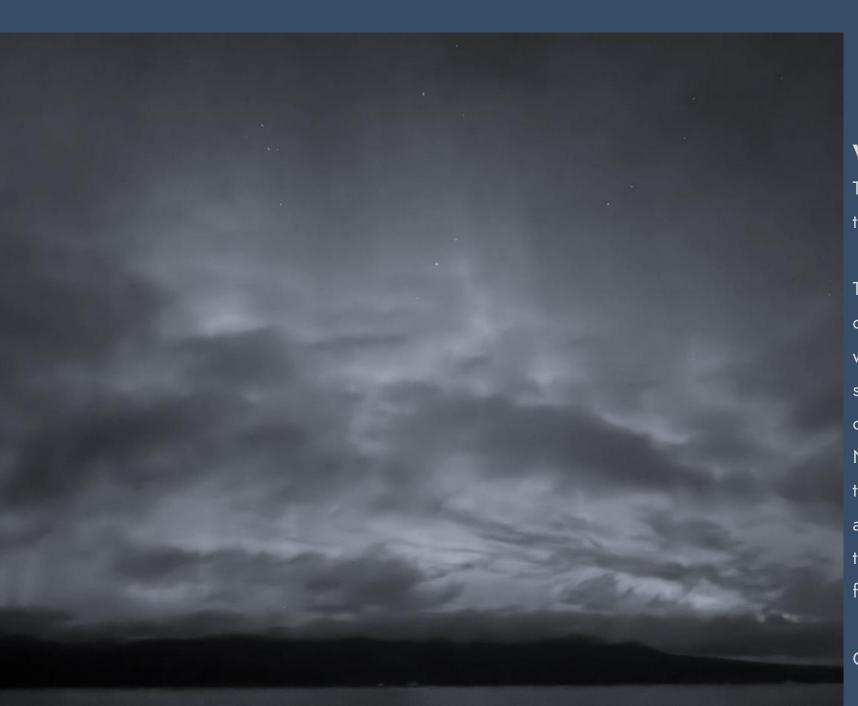
When air flows over a mountain range, it can create a series of large standing waves downstream, similar to ripples in a river. If the air contains enough moisture, the rising forming the distinctive lenticular motion of these waves causes condensation, clouds.


Exceptional Clouds Observations: Fluctus Clouds

During an exceptional ice cruise on September 13th, we were given the rare opportunity to observe Fluctus clouds, also referred to as wave clouds or Kelvin-Helmholtz clouds. This phenomenon is a direct consequence of the Kelvin-Helmholtz instability, a fluid dynamics principle that describes the interaction between two fluid layers of differing velocities, resulting in wave-like structures at the interface.

Exceptional Clouds Observations: Halo

Finally, on several sunny occasions, we observed the fascinating optical phenomenon known as the 22° degree halo, which typically occurs in the presence of cirrostratus clouds. It is not necessarily rare but a very impressive sight. This halo forms when sunlight or moonlight is refracted through ice crystals in the cirrostratus clouds, creating a ring around the sun or moon at a fixed 22° angle.

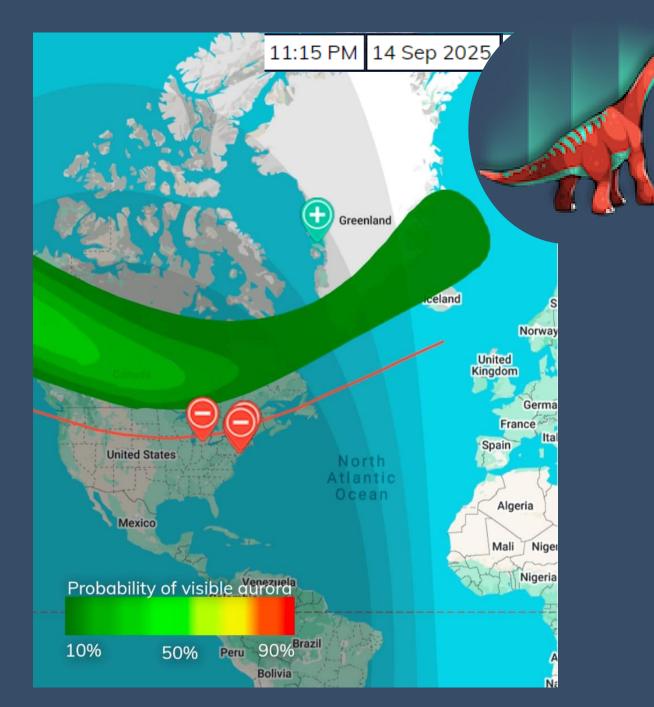


Northern Lights

What are the Northern Lights?

Also called Aurora Borealis, the Northern
Lights are a natural light display caused by the interaction of charged particles from the solar wind with Earth's magnetosphere. When these particles collide with gases in the Earth's atmosphere, primarily oxygen and nitrogen, they release energy in the form of light, creating the colorful displays observed near the polar regions. Similar phenomena happen in the south, also called Aurora Australis.

This picture was taken on the 14th of September, at around 23h, from deck 11 of MS Roald Amundsen.


Northern Lights

Why did we not see all these colors?

The actual sight we had on this night was closer to this image...

The human eye has two types of photoreceptor cells: cones, which are responsible for color vision and work best in bright light, and rods, which are sensitive to low light and help with vision in dim conditions but cannot detect color. Because the Northern Lights often occur in low-light conditions, the dimmer wavelengths, especially those in the red and green spectrum, may fall below the sensitivity threshold of the rods, making the aurora appear faint or even invisible to the naked eye.

Good thing cameras don't have the same limitations!

Citizen Science

AURORASAURUS

Reporting Auroras From the Ground Up

We can help scientist understand better the processes behind these complex physical phenomena.

Aurorasaurus is a citizen science platform that allows users to report and track auroral activity in real-time, helping to create a global map of aurora sightings. It uses data from various sources, including solar wind measurements and geomagnetic field activity, to predict aurora visibility in specific locations.

To make an observation, users simply need to report sightings of the Northern or Southern Lights through the platform, contributing to the data pool and helping improve aurora forecasts.

Negative events (red minus signs on the map) correspond to observer NOT observing an aurora. It allows researchers to better correlate auroral predictions with actual observations from the ground, refining future forecasts.

The positive event on the map (green plus sign) on September 14th at 11:15 PM is the observation uploaded by your expedition team during our cruise.

Geological Highlights: Among the Oldest Rocks on Earth

Our planet came into existence some 4.55 billion years ago, a timespan practically unimaginable for us humans. So it is even more stunning to know that some of the very first rocks that ever formed on Earth are still in existence: The Canadian Shield features has with the famous Acasta Gneisses rocks of 4.16 billion years of age – gold medal (so far). Although the Gibbs Fjord is several hundred million years younger than that, the huge structure of what is know as a *Batholite* is an impressive remnant of the very distant past these rocks come from.

Glacier Landforms

No matter how old the material the landscape is made of, what we see today is nothing but the imprint of the very latest of geological events; and without a doubt the most efficient chisel in mother Nature's toolbox is ice in the form of glaciers.

Whereas plate tectonics need hundreds of millions of years to shape the appearance of our whole planet, ice uses the available material, namely mountains, to create the most amazing labyrinths in just a few millenia.

Glacier valleys are characteristically shaped in the form of the letter "U", and often we see the remnants of a once mighty ice field now hanging in the mountain slopes, without the chance of the ice touching the fjord ever again.

Glacier Remains

Without the ever-grinding white power our continents would be bereft of any fjords and valleys, no debris fields would form those landscapes of barren beauty, no erratic boulders would be caleidoscopically strewn across the land.

But don't get too attached to the wonders around you

— in a 100 million years it will be eroded, only to
begin again in the endless rock cycle.

Looking at a rock field tells you a lot about its provenance and mechanics: If the rocks are still pointy the absence of water in the delivery process is evident; the rounder they are, the more often they have been jumbled down the landscape, shaping each other.

And the composition of the various rock types enables us to confidently tell where the glacier tongues originated.

It's all quite logical, really...

Geology Highlight: Minerals, beautiful in the wild

In several locations, we were able to spot museum worthy minerals in their natural habitat. Back onboard, we could learn more about their formation process by looking at our onboard collection of rocks and thin sections. Eg.

Rhodochrosite pictured here to the left.

Highlight: Glaciers

During this trip we have had the chance to see many glaciers up close and truly experience their power. We have observed vast glacier fronts feeding into the fjords and the ocean, the dramatic ways glaciers have shaped the surrounding landscape, and some of you even vitnessed calving — an unforgettable sight!

We've also learned a little about how the Greenland Ice Sheet is changing, and our visit to the Ilulissat Icefjord was a highlight – a powerful reminder of both the beauty and fragility of these icy giants.

Highlight: Icebergs

We have also encountered countless icebergs on this journey – each one unique in color, shape and size.

Along the way, we explored the different features of icebergs and discovered what these details can reveal about their history and origins.

And of course the sea of icebergs in Ilulissat was simply breathtaking — a true highlight of the trip!

Highight: Sea Ice

Finally, we have been lucky enough to see some of the very first stages of sea ice formation.

In particular we observed the formation of 'pancake ice' — round, floating discs that appear as the ocean begins to freeze.

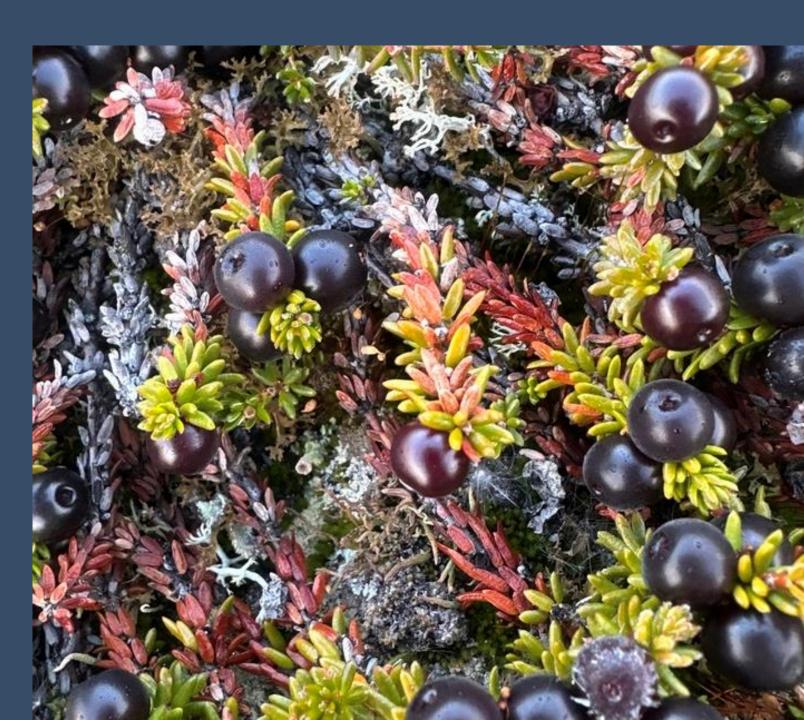
Watching these shapes develop gave us a glimpse into how the vast sheets of sea ice begin their life in the polar areas.

Citizen Science

iNaturalist

During our voyage we had the chance to explore many different ecosystems: from the deserted landscapes of Baffin Island, to the colourful tundra of Greenland; from valleys shaped by glacial ice, to deep fjords filled with icebergs. In these habitats we observed a big variety of flowers, marine invertebrates, birds and mammals.

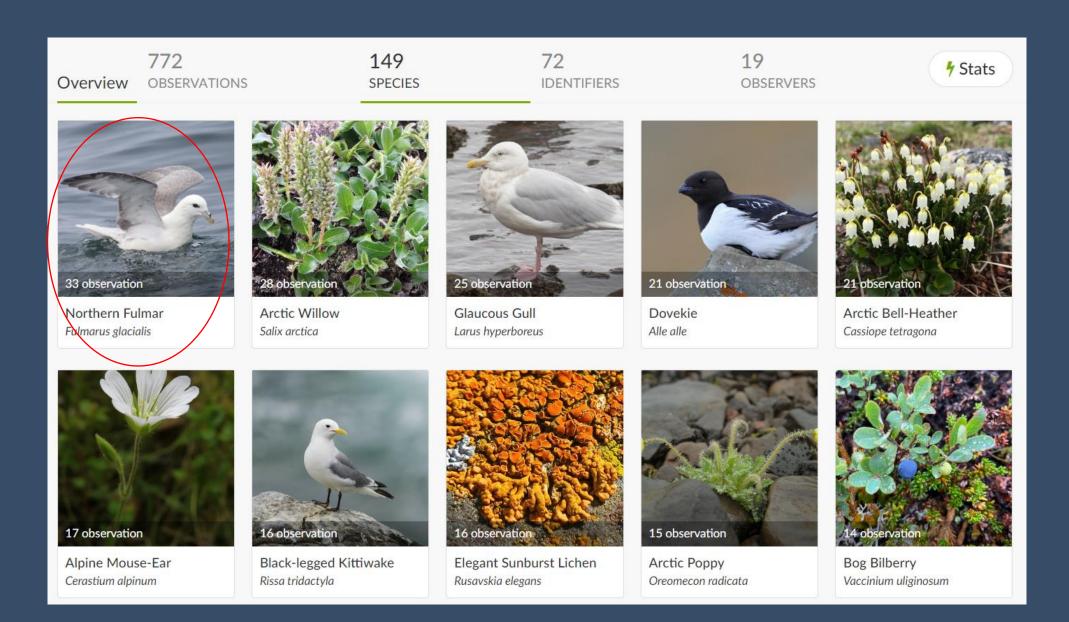
In total we recorded:


- **143** Species
- **804** Observations

... and counting; as you upload more photos from home our datatset grows!

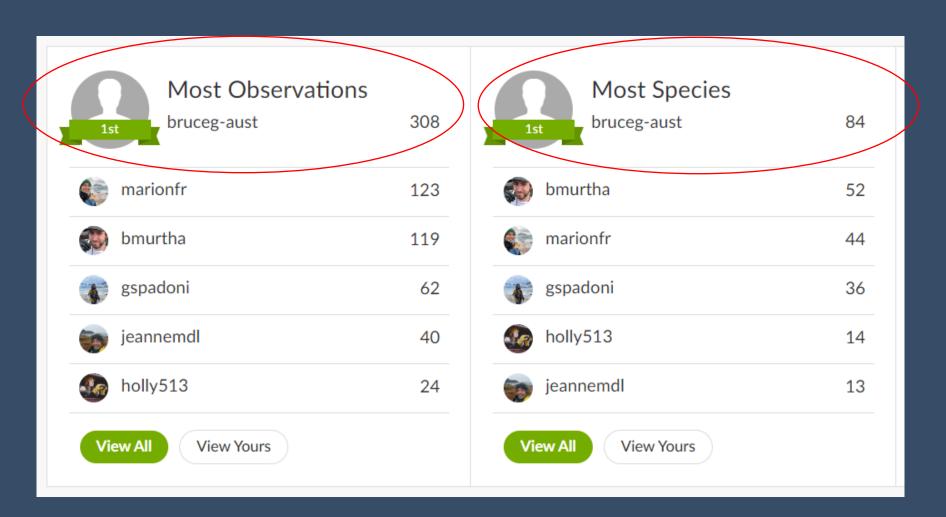
Through iNaturalist, these observations can now be used as data in global scientific research.

Thank you for joining the project and contributing to this amazing citizen cience platform.


View our data submitted on our iNaturalist project here: 2025 Baffin Bay Exploration MS Roald Amundsen 1st - 19th September


Where have we observed?

What have we observed?



What have we observed?

- 61 Plants
- 23 Birds
- 22 Fungi
- 12 Mammals

Who has observed?

- 29 members
- 18 observers

Citizen Science

Happywhale

Cetaceans— whales, dolphins, and porpoises— capture our imaginations and our hearts whenever we witness them. And, doing something as simple as taking a photo of them can help scientists learn more about these animals. That's where Happywhale comes in: by using AI to match images of whales submitted by users, they can track individuals as they migrate across the world and through their lives. When you submit a photo of a whale, you will be notified of any past and future matches of that individual!

We uploaded 1 observation of a humpback whale we encountered in Vaigat Sound, in front of Camp Freida, on Happywhale. We still haven't received any feedback about our fluke picture but keep track of it by accessing our page on Happywhale and discover if it is a new individual or if there is a match!

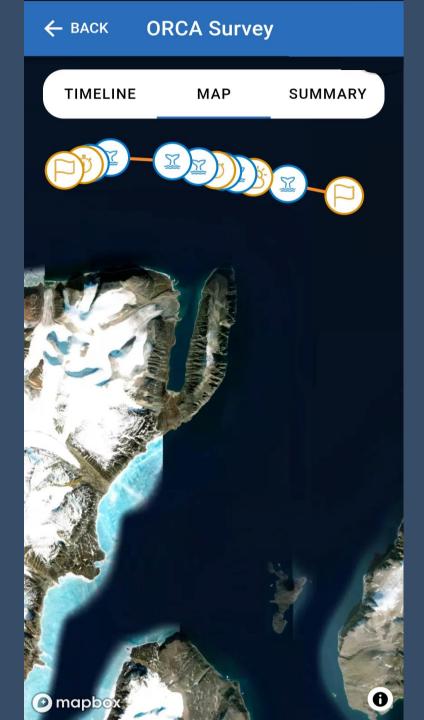
<u>View</u> the MS Roald Amundsen's submissions to Happywhale during our voyage

Citizen Science ORCA

Whilst on your journey around Baffin Bay you were joined by ORCA Ocean Conservationist, Maren, who was collecting data during wildlife watches on whales, dolphins and porpoises.

This data was sent back to ORCA and made available for many organisations interested in cetacean conservation. But also, for anyone who wishes to get an overview of what you might find where.

On this trip though, the main data that was gathered was on seals, as the cetaceans seemed to spend their time playing hide and seek with the ship.


But, there was still a few instances of very amazing whale activity to remember from your journey. 5 species of cetacean were observed.

On 08.09.2025 we hade a group of over 10 belugas swimming slowly along the shore, allowing for some nice photos of white backs. Then there was the breaching and waving humpbacks! Putting on a show for the ship on 16.09.2025.

ORCA: OceanWatcher Survey

On this journey a total of 1661 minutes of data was collected, spanning over 503 km. This is the equivalent of almost 28 hours spent gathering data. And this does not cover all the time some of you have been standing out there, being our eyes.

And a huge thank you to everyone that came out and joined the naturalists for the wildlife watches. And thank you for your humor, brightening up the watches when it was few and far between the animal sightings.

What species did we see?

Species Name	Number of Individuals Seen
Narwhal	10
Beluga	15
Humpback Whale	10
Unidentified Whale	5

Species Name	Number of Individuals Seen
Bearded Seal	4
Harp Seal	78
Unidentified Seals	10

Citizen Science eBird

At sea and on land, our onboard ornithologist was constantly surveying the avifauna we encountered along our route. During September in the high arctic, most birds had already moved south, but seabirds remained abundant, and those lingering landbirds impressed us with their hardiness!

Including 16 onboard Wildlife Watches and eBird sessions on deck, we recorded 26 bird species across 40 eBird checklists. Through the eBird platform, the data we collected is available for scientists around the world to help understand patterns of bird distribution, migration, and habitat use.

View our data for this trip here: https://ebird.org/tripreport/407704

Brendan's Bird Highlight:

Thousands of

Dovekie (Little Auk)

in Lancaster Sound!

Wildlife List - Birds

Wildlife List — Birds

SCIENTIFIC NAME	ENGLISH	DEUTSCH	FRANÇAIS
Anser caerulescens	Snow Goose	Schneegans	Oie des neiges
Branta hutchinsii	Cackling Goose	Zwergkanadagans	Bernache de Hutchins
Branta canadensis	Canada Goose	Kanadagans	Bernache du Canada
Anas acuta	Northern Pintail	Spießente	Canard pilet
Somateria spectabilis	King Eider	Prachteiderente	Eider à tête grise
Somateria mollissima	Common Eider	Eiderente	Eider à duvet
Clangula hyemalis	Long-tailed Duck	Eisente	Harelde kakawi
Phalaropus fulicarius	Red Phalarope	Thorshühnchen	Phalarope à bec large
Stercorarius pomarinus	Pomarine Jaeger	Spatelraubmöwe	Labbe pomarin
Cepphus grylle	Black Guillemot	Gryllteiste	Guillemot à miroir
Alle alle	Dovekie	Krabbentaucher	Mergule nain
Uria lomvia	Thick-billed Murre	Dickschnabellumme	Guillemot de Brünnich
Rissa tridactyla	Black-legged Kittiwake	Dreizehenmöwe	Mouette tridactyle
Larus marinus	Great Black-backed Gull	Mantelmöwe	Goéland marin
Larus hyperboreus	Glaucous Gull	Eismöwe	Goéland bourgmestre
Larus fuscus	Lesser Black-backed Gull	Heringsmöwe	Goéland brun
Larus glaucoides	Iceland Gull	Polarmöwe	Goéland arctique


Wildlife List — Birds

SCIENTIFIC NAME	ENGLISH	DEUTSCH	FRANÇAIS
Gavia stellata	Red-throated Loon	Sterntaucher	Plongeon catmarin
Fulmarus glacialis	Northern Fulmar	Eissturmvogel	Fulmar boréal
Phalacrocorax carbo	Great Cormorant	Kormoran	Grand Cormoran
Falco peregrinus	Peregrine Falcon	Wanderfalke	Faucon pèlerin
Corvus corax	Common Raven	Kolkrabe	Grand Corbeau
Anthus rubescens	American Pipit	Pazifikpieper	Pipit d'Amérique
Acanthis flammea	Common Redpoll	Birkenzeisig	Sizerin flammé
Calcarius lapponicus	Lapland Longspur	Spornammer	Plectrophane lapon
Plectrophenax nivalis	Snow Bunting	Schneeammer	Plectrophane des neiges

Wildlife List — Marine Mammals

SCIENTIFIC NAME	ENGLISH	DEUTSCH	FRANÇAIS	NORSK
Megaptera novaeangliae	Humpback whale	Buckelwal	Baleine à bosse	Knølhval
Balaenoptera physalus	Fin whale	Finnwal	Rorqual commun	Finhval
Globicephala melas	Long-finned pilot whale	Grindwal	Globicéphale noir	Grindhval / Langsveivet grindhval
Delphinapterus leucas	Beluga, white whale	Beluga, Weißwal	Bélouga	Hvithval
Monodon monoceros	Narwhal	Narwal	Narval	Narhval
Phocoena phocoena	Harbour porpoise	Schweinswal	Marsouin commun	Nise
Physeter macrocephalus	Sperm whale, cachalot	Pottwal	Cachalot	Spermhval
Erignathus barbatus	Bearded seal	Bartrobbe	Phoque barbu	Storkobbe
Pagophilus groenlandicus	Harp/Greenland seal	Sattelrobbe	Phoque du Groenland	Grønlandssel
Ursus maritimus	Polar bear	Eisbär	Ours blanc	Isbjørn

Wildlife List — Terrestrial Mamals

SCIENTIFIC NAME	ENGLISH	DEUTSCH	FRANÇAIS	NORSK
Lepus arcticus	Arctic Hare	Polarhase	Lievre arctique	Polarhare
Vulpes lagopus	Arctic Fox	Polarfuchs	Renard arctique	Fjellrev
Mustela richardsonii	American Ermine	Amerikanische hermelin	Hermine d'Amérique	Amerikans snømus

